🍌
EVM-XCM Jungle Toolkit
  • πŸ“—Introduction
    • 🌴What is the EVM-XCM Jungle Toolkit?
    • 🧐Why use this toolkit?
    • πŸ‘ͺWho is this toolkit made for?
    • βš’οΈWhat tools are this toolkit made of?
  • ↔️Build an EVM+Substrate wallet compatible architecture in your dApp
    • ⁉️Two different standards
      • ℹ️Addresses Format
      • 🎭Public Key vs Hash-based
      • πŸ“©Multichain compatibility
      • ⚑Account Types
    • β˜‘οΈRecommended wallets
      • 🦊MetaMask
      • ☸️SubWallet
      • 🀚Talisman
    • 🟒The EVM address standard
      • πŸ”Get an address for a Signer
        • πŸ‘οΈCheck the validity of the address
      • πŸ’°Get the native balance of a Signer
        • Get an ERC20 token's balance
      • πŸŽ‡Get the chain information for a Signer
    • πŸ”΅The Substrate address standard
      • πŸ”Get an address for a Signer
        • πŸ‘οΈCheck the validity of the address
      • πŸ’°Get the native balance of a Signer
      • πŸŽ‡Get the chain information for a Signer
    • πŸ“§Mapping of addresses
    • 🀝Implement multiple wallet support on your dApp front-end
      • πŸ’šUnderstanding the EVM provider/signer concepts
      • ❀️Understanding the Keyring concept
      • πŸ”‘Sign and send EVM transactions
      • πŸ—οΈSign and send Substrate extrinsics
    • πŸ“šRessources
  • ➑️Build a cross-chain transaction from any EVM-chain to a Substrate-based chain using IBC and XCM
    • ⁉️Understanding the flow
    • πŸ¦‘Transfer tokens to Moonbeam Parachain using Squid SDK from any EVM chain
    • πŸͺCreate & execute a transaction on the source chain before bridging tokens (pre-hook)
    • πŸͺCreate & execute a transaction on Moonbeam after bridging tokens (post-hook)
    • ✨Create & execute a swap using Stellaswap pools to obtain xcTokens
    • πŸ™ŒWrap-up
    • πŸ“šRessources
  • ⬅️Build a cross-chain transaction from a Substrate-based chain to Moonbeam chain
    • ⁉️Understanding the flow
    • πŸ’‘Using LightSpell API to generate valid XCM calls
    • πŸŒ‰Transfer tokens between parachains (or relay chain) using XCM and ParaSpell SDK
    • πŸ™ŒWrap up
    • πŸ“šRessources
  • ⏩Build batches on source and destination chains using Squid and batch precompile
    • ⁉️Understanding the flow
    • πŸ‘ŒUnderstanding the batch precompile
    • βœ…Create a batch transaction compatible with Squid router
    • πŸͺIntegrate a batch into a Hook using Squid
    • πŸ™ŒWrap up
    • πŸ“šRessources
  • πŸ”Build a gas-less transaction from/to an EVM/Substrate chain using callPermit
    • ⁉️Understanding the flow
    • πŸ”‹Generating the data to sign
    • ✍️Collecting the signature
    • 🌐Relaying the signature
    • ⚑Executing the transaction
    • πŸ™ŒWrap up
    • πŸ“šRessources
  • πŸ”€Build a custodial solution to make your dApp wallet-less & gas-less using EIP-712
    • ⁉️Understanding the flow
    • ⛓️Smart contract
    • βš™οΈBack end
  • πŸ”½Examples of working cross-chain dApps made using the Jungle Toolkit
    • 🌴Case Study: The Great Escape
      • The Player Structure
      • The xDeposit Function
      • The xRegister Function
Powered by GitBook
On this page
  • EVM (Ethereum)
  • Substrate (Polkadot/Parachains)
  1. Build an EVM+Substrate wallet compatible architecture in your dApp
  2. Two different standards

Public Key vs Hash-based

While EVM addresses are only derivated from the public key, Substrate addresses are hash-based.

EVM (Ethereum)

Ethereum addresses are directly derived from the public key of an account.

The public key is hashed to produce the 20-byte address.

Substrate (Polkadot/Parachains)

Substrate employs a hash-based methodology for address generation, deriving the address from the public key through a cryptographic hash function.

Encoded addresses are composed of 58 alphanumeric characters, resulting in a more concise and recognizable format compared to hex-encoded addresses. SS58 addresses intentionally avoid characters like 0, O, I, and l to enhance readability within a string.

Moreover, addresses can incorporate network-specific prefixes, enabling the utilization of the same public key for deriving addresses across diverse chains. The flexibility extends further through the utilization of derivation paths, allowing the creation of multiple addresses from a single public key for distinct purposes. For instance, users can generate sub-accounts to segregate funds or perform specific transaction types.

Also, Substrate addresses are equipped with a checksum, serving as a validation mechanism to mitigate input errors.

Last updated 1 year ago

↔️
⁉️
🎭